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Determinants of Airy Operators and Applications to
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The purpose of this paper is to describe asymptotic formulas for determinants
of certain operators that are analogues of Wiener�Hopf operators. The determi-
nant formulas yield information about the distribution functions for certain
random variables that arise in random matrix theory when one rescales at ``the
edge of the spectrum.''
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1. INTRODUCTION

This paper is concerned with the asymptotics of Fredholm determinants of
operators that arise naturally in random matrix theory and are similar in
many ways to finite Wiener�Hopf operators. The operators, denoted by
A:( f ), are integral operators on L2(R) with kernel given by

f (x�:) |
�

0
A(x+z) A(z+ y) dz (1)

where

A(x)=
1

2? |
�

&�
eit3�3eitx dt

and f # L�(R). The function A(x) is the Airy function, generally denoted
by Ai(x), and for this reason we call our operators A:( f ) Airy operators.
We will refer to the function f as the symbol of the Airy operator.
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If the term ��
0 A(x+z) A( y+z) dz in (1) is replaced by the sine kernel

sin ?(x& y)
x& y

the resulting operator has the same Fredholm determinant as a finite
Wiener�Hopf operator, whose asymptotics are very well known.(6) The
similarities with the Wiener�Hopf (i.e., sine kernel) case become less sur-
prising after the observation that

|
�

0
A(x+z) A( y+z) dz=

A(x) A$( y)&A( y) A$(x)
x& y

(2)

The proof of this as well as many other facts about the above kernel can
be found in ref. 8. We shall use the fact that A(x) is rapidly decreasing
at +� and O( |x|&1�4) at &�. For the complete asymptotics of the Airy
function, we refer the reader to ref. 5.

Under appropriate conditions A:( f ) is a trace class operator, and thus
the Fredholm determinant

det(I+A:( f ))

is defined. The main goal of the paper is to compute the asymptotics of this
determinant as : � �.

The motivation for finding an asymptotic formula for the Fredholm
determinant comes from random matrix theory, in studying so-called linear
statistics, which are certain functions of the eigenvalues of random
matrices. After a resealing at ``the edge of the spectrum'' their characteristic
functions become Fredholm determinants of our Airy operators. For
general information about random matrices, we refer the reader to ref. 7.
For information about the connection of random matrices, characteristic
functions and the Airy operators we refer the reader to refs. 2 and 8.

The paper is organized as follows. In the second section we derive the
basic properties of A:( f ) and related operators. In the third section we
prove through a series of lemmas that for appropriate functions f and F

lim
: � �

tr[F(A:( f ))&A:(F b f )]=tr[F(W(g))&W(F b g)]

where W(g) is the Wiener�Hopf operator with symbol g(x)= f (&x2).
(The precise definition of W(g) will be given at the end of the next section.)
The trace of the second operator on the left is easy to compute asymptoti-
cally. Taking F(z)=log(1+z) and using the known formula for the trace
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on the right side, we find that the Fredholm determinant is given
asymptotically as : � � by

det(I+A:( f ))=exp[c1:3�2+c2+o(1)] (3)

where

c1=
1
? |

�

0
- x log(1+f (&x)) dx

c2=
1
2 |

�

0
x(G(x))2 dx

and

G(x)=
1

2? |
�

&�
eixy log(1+ f (&y2)) dy

This is proved under the assumption that f is a Schwartz function
(although we could get by with much less) and 1+ f (x){0 for x�0.

This formula bears a strong resemblance to the corresponding
asymptotic formula in the classical finite Wiener�Hopf case. The most
notable difference is the power :3�2 in the first term of the asymptotics.

In the last section we describe the implications of formula (3) for ran-
dom matrix theory. The formula, as in the analogous Wiener�Hopf or
Bessel kernel case (see ref. 2 for details), proves that the distribution func-
tions for certain linear statistics, now scaled at the edge of the spectrum,
are asymptotically Gaussian. The recurrence of the Gaussian distribution
highlights the universality seen again and again in random matrix models.

2. BASIC PROPERTIES OF THE AIRY OPERATOR

We begin by defining the Airy transform A. For g # L2(R) we define
A(g) by the formula

A(g)=F&1Mh F&1(g)

where F(g)(x) is the Fourier transform of g given by

1

- 2? |
�

&�
g(t) e&ixt dt

F&1 is the inverse transform and Mh denotes multiplication by the func-
tion h(t)=eit3�3. We will also use the standard notation ĝ and g� for the
Fourier transform and inverse transforms respectively. Observe that for
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g # L1 & L2 we have A(g)(x)=��
&� A(x+ y) g( y) dy and, just as in the

Fourier transform case, A(g) is the L2 limit of �B
&B A(x+ y) g( y) dy as

B � � for all g # L2.

Lemma 2.1. The Airy transform is unitary on L2 and satisfies
A&1=A.

Proof. Clearly A is unitary since F and Mh are. The Fourier inver-
sion formula says that F&1=JF=FJ, where Jg(x)= g(&x). It follows
that

A=FJMhJF=FMh&1 F=A&1 K

Given the above definition of the Airy transform, we see that the Airy
operator defined by (1) is alternatively defined as the operator Mf:

APA,
where P is multiplication by /R+ and f:(x)= f (x�:). It is this representa-
tion of the operator which we will use. For appropriate f this operator in
turn will have the same Fredholm determinant as AMf:

AP. We next
derive a representation for the kernel of AMf:

A for a class of functions f.

Lemma 2.2. Suppose that f is the inverse Fourier transform of a
finite measure +,

f (x)=
1

- 2? |
�

&�
ei!x d+(!)

Then the kernel of the operator AMf A is given by the formula

1

- 8 ? |
�

&�

e&i!3�12

- i!+0
e&i(x+ y) !�2ei(x& y)2�4! d+(!) (4)

where - i!+0 is defined by taking arg(i!+0) equal to ?�2 when !>0 and
&?�2 when !<0.

Proof. Consider first the case where + is a unit mass at the point ',
and let K' be the operator with the corresponding kernel (4). Then f (x) is
the function e'(x)=ei'x�- 2?. By Lemma 2.1 we see that we have to show

K'=F&1MhF&1Me'
FMh&1 F

or equivalently

K'F&1=F&1MhF&1Me'
FMh&1

Let us compute both sides applied to a function in L2.
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Notice first that F&1Me'
F takes a function .(!) into .(!+')�- 2?.

Therefore MhF&1Me'
FMh&1 takes .(!) into

1

- 2?
ei!3�3e&i(!+')3�3.(!+')=

1

- 2?
e&i(!2'+!'2+'3�3).(!+')

Hence

F&1Mh F&1Me'
FMh&1 .(x)=

1
2? |

�

&�
ei!xe&i(!2'+!'2+'3�3).(!+') d!

=
e&i('x+'3�3)

2? |
�

&�
ei!xe&i(!2'&!'2).(!) d! (5)

On the other hand, we have

K'F&1.(!)=
1

- 8 ?

e&i'3�12

- i'+0

1

- 2? |
�

&�
.(!) d!

_|
�

&�
e i!ye&i(x+ y) '�2e i(x& y)2�4' dy

(If . is a Schwartz function, for example, the interchange of order of
integration this involves can be justified by integration by parts, and it suf-
fices to show our two operators agree when applied to Schwartz functions.)
The inner integral is easily computed and found to equal

2 - ? - i'+0 ei(!&') xe&i(!2'&!'2)e&i'3�4

Thus we see that K'F&1.(!) is equal to the right side of (5).
The lemma is established for the special case of a unit point mass, and

so for any linear combination of these. To establish the general result we
approximate our given + by a sequence [+n] of linear combinations of
point masses such that the measures +n are uniformly bounded and
� .(!) d+n(!) � � .(!) d+(!) for any function . which is bounded and con-
tinuous. Then the corresponding functions fn converge boundedly and
pointwise to f and so the operators AMfn

A converge strongly to AMf A.
For the corresponding operators Kn , it is easy to see that for Schwartz
functions g1 and g2 we have (Kng1 , g2) � (Kg1 , g2), so Kn � K weakly.
Hence, since AMfn

A=Kn for each n, we have AMf A=K. K

To end this section we recall the definition of a Wiener�Hopf operator
and certain of its properties. For a function g # L�(R) the operator W(g)
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on L2(R+) (which we identify with the functions in L2(R) which vanish
on R&) is defined by

W(g)=PF&1MgFP

This is the Wiener�Hopf operator with symbol g. Notice the analogy with
the operators PAMf AP. The fact that there is more than just an analogy
will become apparent in the next section. One often sees a Wiener�Hopf
operator defined as an operator on L2(R+) with kernel of the form k(x& y)
where k # L1(R). This operator is equal to W(g) with g(x)=� e&ixuk(u) du.

We state as a lemma two basic facts about Wiener�Hopf operators.

Lemma 2.3. (a) The spectrum of W(g) is contained in the convex
hull of the essential range of g.

(b) If g is continuous and g(\�)=0 then * is not in the spectrum
of W(g) if and only if *{0, g&*{0 and

i(g&*) :=
1

2?
2&�<x<� arg (g(x)&*)=0

3. TRACE NORM ESTIMATES AND THE AIRY LIMIT THEOREM

We assume from now on that f is a Schwartz function. The reader can
verify that this requirement is too restrictive and can, for example, be
replaced by a weighted space condition. However, assuming that f is a
Schwartz function simplifies the proofs and increases the clarity of the
arguments.

Recall that the Airy operator A:( f ) equals Mf:
APA and is thus

similar to AMf:
AP, which in turn is to unitarily equivalent to the

operator U &1AMf:
APU where U is the unitary operator defined by

Ug(x)=:1�4g(x - :). Note that U commutes with P. This operator will act
as a replacement for the Airy operator in the final computations. The next
lemma, which involves a modification of the above operator, will be impor-
tant in those computations.

Lemma 3.1. The operator U &1(I&P) AMf:
APU converges in the

trace norm to the operator with kernel

1

- 8 ? |
�

&�

f� (!)

- i!+0
ei(x& y)2�4! d! /R&(x) /R+( y)

as : � �.
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Proof. By Lemma 2.2 the kernel of the operator (I&P) AMf:
AP is

given by the formula

1

- 8 ? |
�

&�

:f� (:!)

- i!+0
e&i!3�12e&i(x+ y) !�2ei(x& y)2�4! d! /R&(x) /R+( y)

and thus the kernel of U &1(I&P) AMf:
APU is given by

1

- 8 ? |
�

&�

f� (!)

- i!+0
e&i!3�12:3e&i(x+ y) !�2:3�2ei(x& y)2�4! d! /R&(x) /R+( y)

Changing x to &x in the kernel for convenience gives

1

- 8 ? |
�

&�

f� (!)

- i!+0
e&i!3�12:3ei(x& y) !�2:3�2ei(x+ y)2�4! d! /R+(x) /R+( y)

We shall show that replacing by 1 each of the two factors in the
integrand which involve : leads to an error which is the kernel of an
operator having trace norm o(1). We will use the general fact that the trace
norm of an operator with kernel K(x, y), where y is confined to a set J, is
at most &K&2+|J | &�K��y&2 , where the norms are Hilbert�Schmidt norms.

We first look at the error kernel arising from the replacement
e&i(x& y) !�2:3�3

� 1, which is

1

- 8 ? |
�

&�

f� (!)

- i!+0
e&i!3�12:3

(e i(x& y) !�2:3�2
&1) ei(x+ y)2�4! d! /R+(x) /R+( y)

This we call K(x, y) and find bounds on K and �K��y.
Clearly K(x, y)=O( |x& y|�:3�2)=O(w�:3�2), where w=x+ y. We use

this estimate for w�1. To get a better estimate for w�1 we write the
kernel as a constant times

1
w2 |

�

&�

f� (!)

- i!+0
e&i!3�12:3

(e i(x& y) !�2:3�2
&1) !2 d

d!
ei(x+ y)2�4! d!

and integrate by parts to obtain a constant times

1
w2 |

�

&�

d
d! _!2 f� (!)

- i!+0
e&i!3�12:3

(ei(x& y) !�2:3�2
&1)& ei(x+ y)2�4! d!

Of course we apply the product rule. Differentiating the various factors in
the brackets leads to an extra factor :&3 or w:&3�2, aside from the external
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factor 1�w2. If w�1 we see therefore that integration by parts yields a
factor :&3�2(w) &1=:&3�2(1+w2)&1�2 assuming that of course f is in a
Schwartz function. Integrating by parts once more leads to a factor of
:&3(w) &2. Thus for all positive x and y (w�1 or w�1) we see that our
kernel satisfies K(x, y)=O(:&3�2(w) &2).

We also have to estimate �K(x, y)��y. If we differentiate

|
�

&�

f� (!)

- i!+0
e&i!3�12:3

(ei(x& y) !�2:3�2
&1) ei(x+ y)2�4! d!

we are left with two integrals. In one integral we get an extra !�:3�2 in
the integrand, and the factor ei(x& y) !�2:3�2

&1 is replaced by ei(x& y) !�2:3�2
.

As before this can be seen to be O(:&3�2(w) &2). In the other integral we
get an extra w�! which changes the factor ei(x& y) !�2:3�2

&1 to

w
ei(x& y) !�2:3�2

&1
!

Here after three integration by parts we arrive at an estimate of
O(:&3�2(w) &2).

We have shown that

K(x, y),
�

�y
K(x, y)=O \ :&3�2

1+x2+ y2+
If we use the general trace norm estimate stated above, taking J=(k, k+1)
for k=0, 1,... and adding, we find that the trace norm of the error operator
is O(:&3�2).

If we consider the error due to the replacement e&i!3�12:3
� 1 the argu-

ment is essentially the same and we find a bound for the trace norm of the
resulting kernel of O(:&3). This completes the proof. K

Here and below we shall use the notations O1( } ) resp. o1( } ) to denote
families of operators depending on the parameter : whose trace norms are
O( } ) resp. o( } ).

Lemma 3.2. We have PAMf:
AP=O1(:3�2) in general and

PAMf:
AP=o1(1) if f vanishes on R&.

Proof. The kernel of our operator on L2(R+) equals

|
�

&�
f (z�:) A(x+z) A( y+z) dz
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For fixed z the kernel f (z�:) A(x+z) A( y+z) is a separable rank one
kernel. To compute its trace norm, observe that by the estimates on the
Airy function we have

|
�

0
A(x+z)2 dx={O(e&z),

O((z) 1�2),
z>0
z<0

It follows that the trace norm of our operator is at most a constant times

|
0

&�
| f (z�:) |(z) 1�2 dz+|

�

0
| f (z�:)| e&z dz

and the assertions of the lemma follow easily. K

Corollary 3.3. A:( f ) is a trace class operator.

Proof. After the replacement x � &x the kernel in the statement of
Lemma 3.1 becomes a Hankel operator with smooth kernel and thus is well-
known to be trace class. The lemma implies that U &1(I&P) AMf:

APU is
trace class. Thus (I&P) AMf:

AP is trace class. Lemma 3.2 tells us that
PAMf:

AP is trace class. Hence so is AMf:
AP, and A:( f )=Mf:

APA is
unitarily equivalent to this. K

We remark that this argument could have been made much earlier.
However it would have involved the same sort of estimates as in the proof
of Lemma 3.1 and there was no point in doing this twice.

The operator with kernel

1

- 8 ? |
�

&�

f� (!)

- i!+0
ei(x& y)2�4! d!

is a convolution operator, its kernel is a function of x& y. We will denote
it by Kf . Thus PKf P is a Wiener�Hopf operator with symbol

g(x)=|
�

&�

1

- 8 ? |
�

&�

f� (!)

- i!+0
eiu2�4!e&ixu d! du

Now

|
�

&�
ei((u2�4!)&xu) du=- 4? - i!+0 e&ix2!
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and therefore our symbol is given by

g(x)=|
�

&�
f� (!) e&ix2! d!= f (&x2)

Thus PKf P=W(g) and the connection to Wiener�Hopf operators is now
apparent.

Lemma 3.1 told us that the operator U &1(I&P) AMf:
APU con-

verges in the trace norm to (I&P) W(g) P. The next lemma concerns the
strong convergence of the operator

B:( f )=U &1AMf:
AU

This is the last technical lemma before we can put the pieces together.

Lemma 3.4. The operator B:( f ) converges strongly to Kf as
: � �.

Proof. We have to show that for any . # L2(R)

|
�

&�
|

�

&�

f� (!)

- i!+0
e&i!3�12:3e&i(x+ y) !�2:3�2ei(x& y)2�4!.( y) dy d!

� |
�

&�
|

�

&�

f� (!)

- i!+0
ei(x& y)2�4!.( y) dy d!

in L2(R). We can restrict ourselves to a dense subset of .s since the B:( f )
have uniformly bounded norms.

Write the double integral on the left as

|
�

&�

f� (!)

- i!+0
e&i!3�12:3e&ix!�2:3�2 |

�

&�
e&iy!�2:3�2ei(x& y)2�4!.( y) dy d!

This minus its purported L2 limit equals the sum of the two error integrals

|
�

&�

f� (!)

- i!+0
e&i!3�12:3e&ix!�2:3�2 |

�

&�
(e&iy!�2:3�2

&1) ei(x& y)2�4!.( y) dy d! (6)

and

|
�

&�

f� (!)

- i!+0
(e&i!3�12:3e&ix!�2:3�2

&1) |
�

&�
ei(x& y)2�4!.( y) dy d! (7)
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The operator with kernel ei(x& y)2�! is unitarily equivalent to, and there-
fore has the same norm as, the operator with kernel |!|1�2 ei(x& y)2

. Thus it
has norm O( |!|1�2). The function

(e&iy!�:3�2
&1) .( y)

has norm O(!�:3�2), assuming as we may that y.( y) # L2, and it follows
that the inner integral in (6) has norm O( |!|3�2�:3�2). Hence (6) itself has
norm at most O(1�:3�2).

As for (7), the inner integral equals a function �!(x) whose L2 norm
is O( |!|1�2). Write (7) as the sum

|
�

&�

f� (!)

- i!+0
(e&i!3�12:3

&1) e&ix!�2:3�2�!(x) d!

+|
�

&�

f� (!)

- i!+0
(e&ix!�2:3�2

&1) �!(x) d! (8)

The L2 norm of the function (e&i!3�12:3
&1) e&ix!�2:3�2�!(x) is O( |!|7�2�:3)

and so the first integral in (7) is a function whose norm is O(1�:3). As for
the second integral, observe that

&(e&ix!�:&1) �!(x)&

is O(!) for all ! and : and tends to 0 as : � � for each ! (by the
dominated convergence theorem). Hence the integral obtained by taking
norm under the integral sign in the second integral tends to 0 as : � �,
again by the dominated convergence theorem. This establishes the claimed
strong convergence. K

Now we are ready to begin the final steps in proving (3). The operator
(A:( f ))n=(Mf:

APA)n has the same trace as (PAMf:
AP)n which in turn

has the same trace as (PU &1AMf:
AUP)n=(PB:( f ) P)n. In fact for any

analytic function F defined on the neighborhood of the spectra of both
operators and satisfying F(0)=0 we have

tr F(A:( f ))=tr F(PB:( f ) P)

It is the asymptotics of this last trace we shall compute. We think of our
operators as acting on L2(R+).

In the following two lemmas * will be in the resolvent set of the
Wiener�Hopf operator PKf P=W(g). By Lemma 2.3b this implies that * is
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not in the range of g(x)= f (&x2), so f &1([*]) is a compact subset of
(0, �). We can find a Schwartz function f� which never takes the value *
and which equals f outside some larger compact subset of (0, �), and we
can find one f� which serves for all * in any given compact subset of the
resolvent set of W(g). This will be our notation in what follows.

Lemma 3.5. Let * be in the resolvent set of PKf P=W(g). Then *
is also in the resolvent set of PB:( f ) P for sufficiently large : and the inver-
ses have uniformly bounded norms for * lying in any given compact subset
of the resolvent set.

Proof. Observe that for Schwartz functions f1 and f2 , since
B:( f1) B:( f2)=B:( f1 f2),

PB:( f1) PB:( f2) BP&PB:( f1 f2) BP=PB:( f1)(P&I ) B:( f2) BP

� PKf1
(P&I) Kf2

P=PKf1
PKf2

P&PKf1 f2
P=W(g1) W(g2)&W(g1g2)

(9)

in trace norm since (I&P) B:( f2) BP � (I&P) Kf2
P in trace norm by

Lemma 3.1 and PB:( f1) � PKf1
strongly by Lemma 3.4. This also holds if

the fi are constants plus Schwartz functions.
We take f1= f&* and f2=( f� &*)&1. Observe that the ``g'' corre-

sponding to f2 is (g&*)&1, so in this case the relation (9) reads

PB:( f&*) PB:(( f� &*)&1) P&PB:(( f&*)( f� &*)&1) P

� W(g&*) W((g&*)&1)&P

Now

PB:(( f&*)( f� &*)&1) P=P+PB:(( f&*)( f� &*)&1&1) P=P+o1(1)

by Lemma 3.2. We conclude that

PB:( f&*) PB:(( f� &*)&1) P=W(g&*) W((g&*)&1)+o1(1) (10)

The analogous formula holds when f&* and ( f� &*)&1 are interchanged.
The Wiener�Hopf operators W(g&*) and W((g&*)&1) are invertible, the
first by assumption and the second since ind(g&*)&1=&ind(g&*)=0.
The norms of the inverses are bounded uniformly in : and * lying in a
compact set and the operators PB:(( f� &*)&1) P are uniformly bounded.
This completes the proof. K
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Lemma 3.6. Suppose F is analytic in a neighborhood of the spec-
trum of W(g). Then we have as : � �

F(PB:( f ) P)&PB:(F b f� ) P=F(W(g))&W(F b g)+o1(1) (11)

Proof. By Lemma 3.5, PB:( f&*) P is invertible for sufficiently large
: with uniformly bounded norm for * lying in a compact set in the resol-
vent set of W(g). Let * also be in the domain of F. Then

(PB:( f&*) P)&1&PB:(( f� &*)&1) P

=(PB:( f&*) P)&1 [I&W(g&*) W((g&*)&1)]+o1(1)

=W(g&*)&1 [I&W(g&*) W((g&*)&1)]+o1(1)

The first equality follows from (10) and the uniformity of the norms of the
inverses. The second equality uses the strong convergence of (PB:

( f&*) P)&1 to W(g&*)&1 and the fact that I&W(g&*) W((g&*)&1) is
trace class. Thus

(PB:( f&*) P)&1&PB:(( f� &*)&1) P

=W(g&*)&1&W((g&*)&1)+o1(1)

Multiplying by F(*) and integrating over an appropriate contour gives

F(PB:( f ) P)&PB:(F b f� ) P=F(W(g))&W(F b g)+o1(1)

for any F analytic in a neighborhood of the spectrum of W(g). K

We will be interested in the trace of the first operator on the left side
of (11). The next lemma will tell us the trace of the second operator.

Lemma 3.7. For any Schwartz function f we have

tr PB:( f ) P=
:3�2

? |
�

0
- x f (&x) dx+o(1)

Proof. The kernel of PB:( f ) P equals

1

- 8 ? |
�

&�

f� (!)

- i!+0
e&i!3�12:3e&i(x+ y) !�2:3�2ei(x& y)2�4! d! /R+(x) /R+( y)
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and thus

tr PB( f ) P=
1

- 8 ? |
�

0
|

�

&�

f� (!)

- i!+0
e&i!3�12:3 e&ix!�:3�2 d! dx

We write this as

:3�2

- 8 ? |
�

0
|

�

&�

f� (!)

- i!+0
e&i!3�12:3e&ix! d! dx

and then replace the therm e&i!3�12:3
by 1 just as in Lemma 3.1 to find that

the trace is given by

:3�2

- 8 ? |
�

0
|

�

&�

f� (!)

- i!+0
e&ix! d! dx+O(:&3�2)

We can write this in a more familiar form by replacing the term 1�- i!+0
in the above integral with (1�- ?) ��

&� e&iu2! du. Integrating over ! we find
that this equals

:3�2

2? |
�

0
|

�

&�
f (&u2&x) du dx+o(1)

or

:3�2

? |
�

0
- x f (&x) dx+o(1)

as claimed. K

We now derive our main result on determinants of Airy operators
which gives the promised formula (3) for the asymptotics. We assume, as
always, that f is a Schwartz function.

Theorem 3.8. Assume g(x)= f (&x2){&1. Then as : � �

det(I+A:( f ))=exp[c1:3�2+c2+o(1)] (12)

where

c1=
1
? |

�

0
- x log(1+ f (&x)) dx

c2=
1
2 |

�

0
x((log(1+ g))6 (x))2 dx
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Proof. Assume first that &g&�<1. Then by Lemma 2.3a the spec-
trum of W(g) lies in the open unit disc with center 0. Therefore F(z)=
log(1+z) (the branch equal to 0 when z=0) is analytic on the spectrum
and so we may apply Lemma 3.6. This and Lemma 3.7 tell us that there is
an asymptotic formula of the form (12) where c1 is as stated and

c2=tr[log(I+W(g))&W(log(1+ g))]

It is known that this equals the expression given for c2 in the statement of
the theorem.(10)

To remove the restriction on g we introduce a parameter t and we
would like to define a family of functions ft by 1+ ft=et log(1+ f ), so that
for small enough t our asymptotic formula holds. The problem is that &1
may lie in the range if f, and even if it didn't we might not have
i(1+ f )=0, which is what we need to define a logarithm which is a
Schwartz function. So, as in the preceding lemmas, we introduce a function
f� which equals f except on a compact subset of (0, �) such that 1+ f{0
and ind(1+ f� )=0. Then we define ft by

1+ ft=et log(1+ f� )+ f& f�

Of course f1= f. Moreover, with gt(x)= ft(&x2),

1+ gt=et log(1+ g)

for all t. For sufficiently small t we have &gt&�<1 so that our formulas
hold.

Observe that det(I+A:( ft)) is a family of entire functions of t depend-
ing on the parameter :. Suppose we can show that

det(I+A:( ft))=O(etc1:3�2
) (13)

for large : uniformly on compact t-sets. Then the limit relation

lim
: � �

e&tc1:3�2
det(I+A:( ft))=etc2

which we know holds for sufficiently small t, will hold for all t and there-
fore t=1.

To prove (13) we go back to the PB:( f ) P regarded as operators on
L2(R+). We have

det(I+A:( ft))=det PB:(1+ ft) P
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Now i(1+ gt)=0 and so W(1+ gt) is invertible by Lemma 2.3b. Therefore
by Lemma 3.5 with F(z)=z&1 we know that PB:(1+ ft) P will be inver-
tible if : is large enough. (This will hold for all t in any given compact set.)
For these : we have

d
dt

log det(I+A:( ft))=tr _(PB:(1+ ft) P)&1 d
dt

PB:(1+ ft) P&
=tr[(PB:(1+ ft) P)&1 PB:(ht) P]

where

ht=log(1+ f� ) et log(1+ f� )

By Lemma 3.6 with F(z)=z&1 we know that

(PB:(1+ ft) P)&1=PB:((1+ ft)
&1) P+O1(1)

Also, by (9),

PB:((1+ ft)
&1)) PB:(ht) P=PB:((1+ ft)

&1 ht) P+O1(1)

so that we have shown

d
dt

log det(I+A:( ft))=tr PB:((1+ ft)
&1 ht) P+O(1)

But Lemma 3.7 tells us that with an error o(1)

tr PB:(1+ ft)
&1 ht) P=

:3�2

? |
�

0
(1+ ft(&x))&1 ht(&x) - x dx

=
:3�2

? |
�

0
- x log(1+ f (&x)) dx

because f� = f on R&. Thus,

d
dt

log det(I+A:( ft))=
:3�2

? |
�

0
- x log(1+ f (&x)) dx+O(1)

Integrating over t from 0 to t and exportentiating gives (13) and completes
the proof. K
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4. APPLICATIONS TO RANDOM MATRICES

Theorem 3.7 can be applied to find limiting distribution functions for
a class of random variables which are functions of the eigenvalues of a ran-
dom matrix. In many different ensembles of matrices it has been shown
that the distribution functions are asymptotically normal, (1�4) and this will
be shown also to be the case in our examples. The term ensemble refers to
the probability density assigned to some space of matrices, and this in turn
induces a density on the space of eigenvalues of the matrices. For the
Gaussian Unitary Ensemble (GUE) the density on the space of eigenvalues
is given by

PN(x1 ,..., xN)=
1

N!
det K(x i , xj)| N

i, j=1 (14)

where

KN(x, y)= :
N&1

i=0

,i (x) ,i ( y) (15)

and ,i is obtained by orthonormalizing the sequence [xie&x2�2] over R. If
N is large it is also well known that the density of the eigenvalues is sup-
ported on approximately the interval (&- 2N , - 2N ). These facts can be
found in ref. 7.

The random variables of interest here are ones that are often called
linear statistics and are of the form

:
N

i=1

f (*i �:)

where *i are the eigenvalues and f is an appropriate function. Our goal is
to study these random variables applied to the eigenvalues near the edge
of the spectrum and to this end we rescale and replace the sum by

:
N

i=1

f (21�2N1�6(*i&- 2N )�:)

The purpose of the translation by the term - 2N is to move to the edge
and the factor 21�2N 1�6 has the effect of making the eigenvalue density of
the order 1. Otherwise the eigenvalues ``bunch up'' or ``spread out'' and all
the results become more or less trivial.
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To study the distribution function of this random variable we use its
characteristic function, or inverse Fourier transform. This characteristic
function is given by

,N(s)=|
�

&�
} } } |

�

&�
eis � N

j=1 f (21�2N1�6(xj&- 2N )�:))PN(x1 ,..., xN) dx1 } } } dxN

It is a general fact that

|
�

&�
} } } |

�

&�
`
N

i=1

(1+ g(xi)) PN(x1 ,..., xN) dx1 } } } dxN=det(I+ gKN)

where g denotes multiplication by g(x) and KN denotes the operator with
kernel KN(x, y). This can be obtained by expanding out the product in the
integrand, using the formula

N!
(N&n)! | } } } | PN(x1 ,..., xn , xn+1 ,..., xN) dxn+1 } } } dxN

=det KN(x i , xj)| n
i, j=1

for the n-point correlation function, and then recognizing the resulting sum
of multiple integrals as the expansion of the Fredholm determinant. Or it
can be obtained by a simpler algebraic device.(9) In our case 1+ g(x)=
exp[ f (21�2N1�6(x&- 2N )�:)]. If we make the changes of variable

x �
x

21�2N1�6+- 2N , y �
y

21�2N 1�6+- 2N

we find that the characteristic function equals the determinant of I plus the
operator with kernel

(eisf (x�:)&1)
1

21�2N 1�6 KN \ x
21�2N1�6+- 2N ,

y
21�2N1�6+- 2N +

Now one has the scaling limit

lim
N � �

1
21�2N 1�6 KN \ x

21�2N1�6+- 2N ,
y

21�2N1�6+- 2N+
=

A(x) A$( y)&A$(x) A( y)
x& y
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precisely the Airy kernel. Thus we see that the large N limit of the charac-
teristic function equals ,(s)=det(I+A:(h)) where h(x)=eisf (x)&1. Our
asymptotic formula yields

,(s)=exp {is:3�2

? |
�

0
- x f (&x) dx&

s2

2 |
�

0
x(g� (x))2 dx+o(1)=

where as before g(x)= f (&x2).
Notice that the limiting characteristic function is quadratic in s and

hence the distribution is asymptotically normal. Of course this is not
surprising since this occurs for other matrix ensembles and other scaling
limits. Notice, though, that in this case the mean and variance of the
limiting distribution only depend on the negative values of the argument of
the original f. This is a reflection of the fact that the Airy function goes
rapidly to zero for positive values and oscillates and tends to zero slowly
for negative values of the argument. A question left to the future is how the
asymptotics of functions A(x) and B(x) in a kernel of the form

A(x) B( y)&A( y) B(x)
x& y

affect the asymptotics of the corresponding distribution functions.
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